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Abstract. We investigate a parameter-dependent map describing a chaotic scattering system. In
parameter ranges leading to an incomplete horseshoe we construct an approximate symbolic
dynamics which describes quite well the hyperbolic component of the invariant set, [ts
grammatical rules are correlated with the convergence properties of the thermodynamical
formalism for the measures characterizing the invariant set.

1. Introduction

It has always been the task of scattering theory to find out, how properties of a system
can be exiracted from asymptotic measurements on the projectile, in particular from the
defiection function, the time-delay function or similar objects. In the case of chaotic
scattering (for reviews see [1,2]) these functions contain singularities on a fractal subset of
their domain. Scattering chaos of this type has been found in a large variety of systems,
e.g. in classical models for molecular reactions (for these processes see the review [3]), in
model computations for satellite encounters [4], for vortex scattering in hydrodynamics [5],
in soliton scattering [6], for particle transport in an open hydrodynamical flow [7] and for
various models of potential scattering. Therefore, any improvement in our understanding of
chaotic scattering and in particular any enlargement of our methods to attack such systems
has the chance to be useful in a wide variety of physical subfields.

In the case of chaos and its associated fractal structures we must find out how we
extract from these structures quantities which characterize the complicated motion inside
the interaction region. Chaotic scattering is the Hamiltonian version of transient chaos [8].
The skeleton of all complicated motion is a chaotic invariant set (the chaotic saddle) in
the phase space. In its vicinity scattering trajectories are kept for a while and trace out
temporarily the type of motion performed permanently by the localized chaotic trajectories.
The chaotic set has a relatively simple structure only when it is completely hyperbolic. For
an example of a complete description of the invariant set in such a case see [9]. In the
completely hyperbolic case the invariant set consists of unstable periodic orbits (which are
all hyperbolic in this case) and their homoclinic and heteroclinic connections only, it does
not contain KAM tori, cantori or any subsets of marginal stability. It is a pure example of the
type of invariant set occuring in Smale’s horseshoe construction [10]. Its fractal strocture
and the measures characterizing it as e.g. dimension, entropy, Lyapunov exponents, escape
rate, etc can be extracted from scattering data, in particular from the arrangement of the
singularities in the deflection function or the time delay function. The appropriate method to
do this is the thermodynamical formalism [11, 12]. In the non-hyperbolic case the invariant
set contains KAM surfaces and cantori around them in addition. They are more sticky than
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purely hyperbolic sets {13-15] and make a complete description of the invariant set very
complicated. _

Fortunately, in most cases the non-hyperbolic influences become noticable only on the
long-time behaviour and on very fine resolution. Many properties of the system and its
behaviour on short time-scales are dominated by the hyperbolic component of the invariant
set. Therefore it is worth while to find ways to extract the properties of this component
from scattering functions,

In this paper we shall investigate such possibilities. For simplicity we take an iterated
map describing the unbound motion of a kicked particie in a one-dimensional position space.
The map contains one free parameter such that the system is completely hyperbolic for large
parameter values and pruning sets in below a threshold value of this parameter. For a few
examples of a symbolic dynamic with pruning for an open system see [16-18]. For some
general considerations of pruned symbolic dynamics and their evaluation see [19,20].

Our model and its parameter dependence will be presented in section 2, We investigate
the homoclinic tangle of the most important unstable fixed point and derive from it
possibilities for an approximate symbolic dynamics, first for one particular small range
of parameter values, In section 3 we compare the structure of the homoclinic tangle with
the structure of singularities in the time-delay function. Section 4 shows the limitafions of
the approximate symbolic dynamics. In section 5 we can use our knowledge to understand
the convergence properties of the thermodynamical formalism for the extraction of measures
of the hyperbolic camponent of the invariant set. Section 6 shows how these ideas can be
realized for more general parameter ranges and section 7 contains concluding remarks.

2. The mode! and its parameter dependence

We describe the motion of a kicked particle on the one-dimensional line by the iterated map
P

g(n + 1) =gq(n) + pin) pln+1y=pn)+ Af(girn-+1)). 1

Here ¢ is the position coordinate, p is the momentum coordinate, n is the discrete time,
and A is a free parameter. For the force function we take the particular function

Flg) =q(q — Dexp(—q). 2

The phase space is the ¢, p-plane. By a simple transformation the map can be cast into the
form

gn+ 1) =4 +Tpn) pln+1)=pn)+ f(Gn+ 1 (3)
where now the free parameter T is the time between two consecutive kicks. We found it

more convenient to work with the form (1).
The force given in (2) corresponds to the potential

Vig) = f ds s(s — 1) exp(—s) = (g% + g + 1) exp(—q) . 4)
q

Our motivation to choose a map of this kind is two-fold. First, we are interested in
a parameter dependent smooth map in contrast to the non-smooth systems investigated
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in [16-18]. Accordingly, in our system homoclinic/heteroclinic bifurcations are generic
tangencies, whereas in non-smooth maps a corner of one manifold hits another manifold,
Thereby we hope to obtain the generic, structurally stable scenario. Second, the potential (4)
has the structure of a radial potential with centrifugal barrier similar to potentials occuring
in atomic scattering processes.

The potential (4) has a minimum at ¢ = 0 and a relative maximum at ¢ = 1. The
maximum leads to the fixed point

Xo = (g0, po) = (1,0) &)
of the equations of motion (1) and the minimum of the potential leads to the fixed point

x) = (g1, 1} = (0,0}. (6)

The point xp is always an unstable hyperbolic point. The eigenvalues of the Jacobi matrix
of P at xo depend on A and are given by

Mao=14+A/2e+ (AJe+ AZj4e?)?, o
At the point x; the eigenvalues of the Jacobi matrix of P are
tiz=1—A/2E (—A+ A2, ®

The point x; turns from elliptic to inverse hyperbolic at A = 4.

At A = 0 the system is completely integrable, while for A % 0 we find transverse
homeclinic intersections of the invariant manifolds of xp. Accordingly for A # O the map
P contains topological chaos. For A > A; & 5.5 the system is completely hyperbolic. Then
it has a complete Smale horseshoe and can be described by a binary symbolic dynamics
without any pruning and therefore with trivial grammatical rules. For A < A; pruning sets
in, the horseshoe becomes incomplete and we find a mixed phase space having KAM tori.

Fortunately, the KaM tori do not have a large influence on the scattering behaviour and
therefore let us try to describe the hyperbolic part of the invariant set. For some parameter
values this can be done in a rather complete way. The motivation for the choice of the
appropriate parameter intervals comes from the plot of the topological entropy Ky, or of the
corresponding branching ratio B = exp(Xy), of the invariant set. Let us first present scme
results, for it is more convenient to explain later how these results have been obtained in
detail. Figure 1 shows a plot of B versus A. Most striking are the steps in this function in
which B changes only slowly, We have the impression that there are intervals in which no
important bifurcations occur and in which the grammatical rules for the symbolic dynamics
to be constructed do not change drastically. A few of this steps in the figure are labelled
by a number o whose meaning will become clear later.

The most prominent step is the interval I;n = (A2, A1y24) (labelled by 15 in the
figure). The nature of the relative stability of the dynamics inside this interval and the
absence of important bifurcations can be understood from a plot of the invariant manifolds
of xo as presented in figure 2. All homoclinic intersections and also all other points of
the invariant set are contained in the curvilinear rectangle R with the corners xg, yi, ¥2, ¥3-
Most important is the observation that the tips of the tendrils of the manifolds reach into
empty space, i.e. into gaps which are free of manifolds. Therefore a small stretching or
compression of the tendrils does not produce homoclinic tangencies. Now we have to
realize that a change of A has the effect on the manifolds that they change their length and
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Figure 1. Branching ratio B versus parameter A computed from the number of intervals of the
various levels in the time-delay function, A few of the intervals [, are indicated and labelled

by o
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Figure 2. Numerical construction of the invariant manifolds of the fixed point xq for the
parameter value A = 3.4, which lies inside /) but close to its lower end. All tendrils up to
level 4 are plotted.

can produce homoclinic bifurcations whenever the tip of a tendril hits another manifold.
However, when the tips reach into areas free of other manifolds then a small change of
the length avoids tangencies and homoclinic bifurcations at least in some small interval of
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(¥ Id)

Figure 3. Schematic plot of the tendrils of the invariant manifolds of x. Tendrils vp to level 2
are included. Part (a) shows the sitnation for A < A/-, part (b) shows the situation for
Ayp- < A < Ay, part (¢) shows the situation for A > A4, part (d) shows the case of a
complete horseshoe for A > A;. The hatched areas indicate gaps inside tendrils of W" which
are free of higher level tendrils of WY. The dotted areas indicate gaps inside tendrils of W*
which are free of higher level tendrils of W5,

values of A. This is exactly what happens in the interval I;;; and in other intervals of slow
change of Ky. In these particular intervals we hope to avoid many of the problems which
occur generally in wild hyperbolic sets as described in section 6.7 of [21].

Let us explain this effect in detail with the aid of a schematic plot, figure 3. For A just
below A;;;— we have a situation for the stable and unstable manifolds W* and W" of x, as
shown in figure 3(a). Also here all homoclinic intersections are located inside the rectangle
R with the corners xg, ¥1, y2, ¥3. The tendrils of the hierarchy fevels 1 and 2 are plotted as
the labels on the tips of the tendrils indicate. The tip of the tendril of level m is labelled
BY tm.u OF ty s for the unstable and the stable manifold respectively. #,41 4 is the image of
tm.u under P and f,4) s is the pre-image of t,, s under P. The hatched areas are gaps inside
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tendrils of W and these areas are void of further tendrils of W' coming from higher levels
in the hierarchy. All higher level tendrils of W* are contained in the unhatched areas. In
the same way the dotted areas mark the gaps inside tendrils of W*® and these areas are void
of further tendrils of W* coming from higher levels. Therefore in the situation as shown
in figure 3(a) the tips of the tendrils will in general undergo homoclinic tangencies when
their length is varied during a small change of A.

Next, let A increase somewhat such that a situation like the one in figure 3{(b) is created.
Now the tips of the tendrils (the anes of higher levels not plotted in the figure as well as the
ones shown in figure 3()) are either outside of R (as the ones of level 2) or lie in the hatched
area {as the ones of level 1), When the tips of two tendrils intersect each other in 2 points
(as the tips of the tendrils of level 1 do) then we count this also as a situation in which the
tip of one tendril lies inside the interior of the other tendril. We have to take a point in
the small arc lying in the hatched/dotted area as the true tip. Therefore small changes of
their length (small changes of A) do not cause homoclinic bifurcations. We have a situation
with A € I1;5. If A becomes larger than A;/z,, then we find a situation like the one in
figure 3(c). Now the tips of the tendrils lie outside of the gaps again and accordingly they
can again create homoclinic tangencies at small variations of A. For comparison figure 3(d)
shows the situation for A just above A;. Here all tips of tendrils lie outside of R.

With the aid of figure 3 we can also explain more precisely how we divide the invariant
manifolds into the various tendrils, First we mark points 2, on W“ and 2, ,, on W? such
that one of those points lies on each arc of the invariant manifolds which lies outside of
the fundamental rectangle K. The first one has index O the other ones have as indices the
natural numbers according to their order along the manifolds. It is natural to make the
choice such that zy 4 is the image of z,,, under P and zg 41 15 the pre-image of zg .
By Lym or L, we denote the arcs between z,,, and zy 41 Or between Z;» and I my
respectively. The local arc of W, i.e. the one from xg to 2,0, we denote by Ly _, in the
same way the local arc of W*, i.e. the one from xg to z.0 is denoted by L; —. L, is the
image of Ly under P” and L, ,, is the image of Ly under P™™. When we speak of the
tendril of level m in the following we mean the arc L, ,, or L;, respectively or the parts
of them which lie inside R.

The value of the parameter « is determined as follows. « has the value r2=% if the
tip of the tendril of level 1 lies inside that gap of level k which is the rth of all gaps of
level k, where we count them as follows. Consider all the gaps of W* {(for W* everything
goes symmetrically) in the complete horseshoe construction as shown in figure 3(d). There
are 2-1 ones created by the tendril of level k. Count them with only the odd numbers
(to avoid cancellations between numerator and denominator in &) from 1 to 2¥ — 1 in the
order in which they intersect the arc (xg, y2) of W, i.e. give the number 1 to the gap lying
closest to xo, the number 3 to the next one, etc and the number 2 — 1 to the one lying
closest to y;. For lower values of A all the gaps which remain keep the same number as
in the complete case, even though for A < A, some gaps in between have disappeared. A
comparison of the schematic plots of figures 3(b), 3(d), 10(a), 10(b), 13, where the values
of  are 1,1, 7,2 and £ respectively, may help to get a feeling for this definition of .

For these rules we have only taken into account the primary tendrils as shown in figure 3.
We have disregarded the secondary tendrils as they will be described in section 4.

3. The time-delay function and its hierarchical organization

Now we are in the position to explain the construction of the time-delay function: a
scattering trajectory has the time-delay Dt = n, if n of its points lie inside of R. To
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construct the time-delay function we have first to give a scheme of how to label asymptotes
of scattering trajectories. In the asymptotic region (i.e. in the region ¢ = +00) the force
converges to zero rapidly, so that the asymptotic form of the map P becomes Py given by

Gas(n + 1) = qas(n) + pas(n) Pas(n+ 1) = pas(n). (9)

In the asymptotic region the momentum pinsom is conserved and can be used as one of the
labels. To get the second one, we take an interval Q(pi,) = (g1, ¢2) of g values where
g2 = 4, — P and choose g; independent of pi, and sufficiently large such that the whole
interval lies well in the asymptotic region. Each asymptote with momentum p;; steps exactly
once into Q{pin} at the point giz/om and this particular value of g is used as the second
label for the asymptote. To obtain the time-delay function Dt (gin; pin) fix some convenient
choice of pi, (here convenient means that the interval Q{(p;,) intersects the stable manifolds
of the invariant set transversally), scan the interval Q(p;,) and plot Dt versus g;,—figure 4
shows the example for A = 3.4, p,, = —4. We have chosen g; = 7. Part (a) shows this
function on its whole domain Q(pis). In most parts it is not very interesting. Only the
small part around g¢;, = 10.05 contains all the structure we are interested in. Part (b) gives
a magnification of this interesting subinterval. We see a castle-like structure where each
gap between two consecutive singularities is surrounded by smaller non-singular intervals
with 2 higher value of Dt. This structure is continued ad infinitum in a fractal hierarchy.
Part (c) gives a further magnification of a small part of figure 4(b) to show the self-similar
structure of the whole function.

Several horizontal lines (labelled by level numbers ) separated vertically by a distance
of 1 are included. The one with label m lies at the height Dr,, = 4.5+ m. These horizontal
lines cut out intervals J,.(m} with the following properties: the boundary points of J,-("'] are
infinities of D, inside of J,-('”] the value of Dt is always larger than Di,,, and the values of
Dt in the adjacent non-singular intervals outside of Ji(m) are smaller than Dr,,. A few of
these intervals are indicated in the figures. Let the number of disjoint intervals J,('") on level
m be N{m). Then in the limit of large m we expect N(m) to grow like N (m) o exp(mKop),
where Ky is the topological entropy of the system. The value of B = exp(Kj) obtained by
this method is the quantity plotted in figure 1 as function of the parameter A.

Next we have to correlate the structure in the time-delay function with the homoclinic
tangle shown in figures 2 and 3, and in particular with the structure of the intersections
of W with the local branch of W* (i.e. the piece between xo and y; which is a part of
the arc L;_). In particular, the hierarchical organisation of both structures is the same and
should be described by the same symbolic dynamics. Figure 5 shows the corresponding
branching tree. First let us explain how this branching tree taken together with its mirror
image contains the castle-like structure of the time-delay function. On level —1 we cut
out that part of Q(p;,) in which Dt > 3.5. This is the interval Jf'” and it contains the
complete castle structure, At level O (L.e. in the height of the horizontal line at Dfp = 4.5)
4 first gap occurs which cuts away a middle piece of J,(") and two connected subintervals
.I](m and Jifm are created on level 0. To the right one (ie. to JZIU]) the branching tree as
shown in figure 5 applies and to the left one (i.e. to J’]w}) the mirror image of figure 5
applies. Going from level O to level 1 each of the two intervals of level 0 is cut into two
pieces of level 1. To the two outer intervals we give the label 0, to the two inner ones we
give the label 1. In the next step, the one from level 1 to level 2, the two outer intervals
are cut, the two inner ones are not cut. Here and in the higher levels we construct labels by
the following rules: if an interval of level m is not cut during the transition from level m to
Tevel m <+ 1, then the resulting interval on level m+ 1 get its label by adding a + to the label
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Figure 4. Plot of the time-delay function of system (1) for the parameter value 4 = 34
and initial conditions pj, = —4. Part (a) shows the function on its whole domain, ie. for
¢in € (7, 11), part (&) gtves the magnification of the interesting part containing all singularities,
part (¢} shows a further magnification to demonstrate the self simifarity. Several horizontal lines
at heights Dty = 4.5+ m are included and labelled by m. They indicate how the intervals J™
are cut out, A few of these intervals are indicated and labelled in the figures.

of its parent interval of level m. If an interval of level m is cut into two pieces during the
transition from level m to level m + 1 then the labels of the resulting two new intervals of
fevel m + 1 are obtained by adding either a 0 or a 1 to the label of the parent interval. The
rule for the distribution of the 0 and 1 is as follows in the right half of the castle (in the left
half it is just the other way around): if in the label of the parent interval there is an even
number of 1s then the new interval on. the right side gets the 0 and the new interval on the
left side the 1. For an odd number of 1's in the label of the parent interval it is the other
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Figure 4. (Continued)}
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Figure 5. Branching tree for A € I|;2. The branch containing the longest intervals of each level
is plotted by a thick line, Each entry is labelled by the last two digits of its symbolic code.
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way around. This rule takes into account that the fixed point x; (which corresponds to the
symbol 1) is inverse hyperbolic and the map inverts the orientation in its vicinity. These
rules also go over into the standard symbolic dynamics of the horseshoe in the complete
case. figure 5 shows the tree up to level 6 for the case of @ = % Because only the last
two digits of all labels are important for the following, we write only these last two digits
in the figure.

Now let us compare this branching tree with the intersection structure between W'
and W* along the interval L, - as shown in figures 2 and 3. Regarding only tendrils up
to hierarchy level 0 we obtain only the single interval Jlm) = {xg, v3). Going next up to
hierarchy level 1 the tendril of level 1 of W*® cuts a gap into the middle of 11(0) leaving
two subintervals, one from xp to y4 which we call J. ”), the other one from ys5 to y3 which
we call Jl(”. The interval Jlm is not cut any further by the tendril of level 2 of W* and
it coincides with the interval Jlm of level 2 whereas the interval J’l,(IJ is cut by L» into

the two subintervals 12(2) and 13(2) of level 2. If we continue this scheme for higher levels
then we repeat exactly the branching scheme of the delay function as presented in figure 5.
Of course, for the intervals along L; — we use the same symbolic codes again as for the
intervals in the time-delay function. In this way the delay function reflects the structure
created by the homoclinic tangle of the outermost hyperbolic fixed point. We can formulate
the grammatical rules in the form that we say which symbols are allowed to be appended
on an existing string. As we shall see the rules depend on the last two digits of the already
present string. In the case that the present string has length 0 or I we can imagine that it
is supplemented to the left by a string of 0’s of arbitrary length.

The structure of the branching tree for A € ;> can be condensed into the following 5
rules:

after symbol strings ending on 0 it is allowed to attach either 0 or 1
after symbol strings ending on 01 it is only allowed to attach +

after symbol strings ending on 11 it is only allowed to attach +

after symbol strings ending on +1 it is allowed to attach either 0 or |
after symbol strings ending on 1+ it is allowed to attach either 0 or 1.

These rules lead to the following recursion relation for the number Z{m, 1/2) of intervals
which occur in the branching tree for A € /3 on level m:

1 1 1
Z@%§=ZW-L§H43W—15% (10)

To construct the transfer matrix M for the above rules, take the five end pieces ¢; of symbol
strings considered in the grammatical rules in the above order; e¢; =0, e5 = 01, &3 = 11,
e4 = +1, es = 1+4. The matrix element M, ; has the value 1, if it is allowed to attach a
symbol to a string ending on ¢; in such a way that the new end becomes e;. M; ; has the
value 0 otherwise, We obtain

1

(1

—_—o00 o |

0
Myy.=1|0
1
1

[ e Y o B e
O=0 OO0
= ]

The characteristic polynomial of M;;2 has the form

Pip(v) = v ? v —2). (12)



Non-hyperbolic scattering map 65

Its non-trivial factor is consistent with the recurrence relation (10). The largest root of P ;s
is v = 1.71... which coincides with the branching ratio B for A € I1;» found in figure 1
which has been constructed directly from the time-delay function.

So far we have considered the invariant manifolds of the fixed point xo only. Fortunately,
the invariant manifolds of all other unstable periodic points, which are accessible to
scattering trajectories, show essentially the same behaviour. The accumulation points of
homoclinic points of xo coincide with the accumulation points of homoclinic points of these
other unstable periodic points and therefore with that part of the hyperbolic component
of the invariant set which is accessible to scattering trajectories. Accordingly the absence
of homoclinic bifurcations of xo in some open parameter interval indicates the absence
of homoclinic bifurcations in the whole part of the invariant set which is relevant for the
scattering behaviour. Furthermore, xp is the outermost periodic point, the one sitting on top
of the potential barrier which divides the inside and outside regions of the position space.
Therefore, the end points of non-singular intervals in the time-delay function are given by
initial conditions which lie on the stable manifold of xy. So the invariant manifolds of x; are
the ones which determine the properties of the time-delay function and the other scattering
functions.

4. Limitation of the symbolic dynamics

So far we have tried to construct a symbolic description with a finite number of rules for
a non-hyperbolic system having an incomplete horseshoe. Of course, this construction can
only be approximate, since the exact grammar for a symbolic dynamics of such a system
should have an infinite number of rules. In this section we show briefly what we have not
described correctly by the construction done above and what types of errors occur. This can
be seen best in a more detailed figure of the tendrils as shown in figures 6 and 7. Figure 6
shows two magnifications of the numerical construction of the manifolds and figure 7 shows
the corresponding schematic plots of the essential parts. In figure 6 the parameter value
A = 4,15 has been chosen which stil] lies inside I;/; but very close to its upper end, where
the errors in our approximate symbolic dynamics become visible even in quite low levels
of the hierarchy. Therefore such parameter values are better suited to demonstrate the type
of errors which occur. However, this type of error is always the same; only for parameter
values not so close to the upper end of the interval they become noticeable, only in higher
levels of the hierarchy. The important feature in figure 6{a) is: in a place where we expect
just one transversal intersection between W*° and W*® there are really three intersections.
This triple intersection is marked by three small circles in the figure. Figure 7(a) gives
a schematic view of what we expect according to our symbolic dynamics and figure 7(b)
shows in a schematic plot what we find instead, namely 2 triple intersection between W*
and W". In images and pre-images of these points under the map P this leads to secondary
tendrils as the ones shown in figure 6(b) for the numerically constructed manifolds and
shown in the schematic view in figure 7{c).

These secondary tendrils can create additional homoclinic intersections not contained
in our symbolic dynamics. And under small changes of A the tips of these secondary
tendrils can undergo homoclinic tangencies also in parameter intervals in which there are no
homoclinic bifurcations created by the tips of the primary tendrils. The secondary structure
shown in figure 6(a) is the one occuring on the lowest level of the hierarchy (level 5 in
the case of A = 4.15) and at this level it is not yet noticable in the time-delay function.
There it occurs for the first time at level 10, i.e. at the level at which the secondary tendrils
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Figure 6. Small part of the homoclinic tangle of x( for the parameter value A = 4.15. in part
(a) note the triple intersection, marked by circles, which is not contained in our approximate
symbolic description. Part (&) shows an example of how the images and pre-images of triple
intersections lead to secondary tendrils, whose intersections do not fit into the scheme of our
approximate symbolic dynamics.

start to create homoclinic intersections along L, . However, at higher levels the number
of secondary structures increases rapidly and they dominate the behaviour of the system for
m — co. The structure of the tendrils must become more complicated for high levels, since
there are KAM tori in the phase space. For sufficiently high levels the tendrils of W" and
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Figure 7. Schematic plots of small sections of the
homoclinic tangle. Part (2) shows the structure we
would have in the case that our symbolic dynamics
is exact. Part (b) shows the actual structure we
find instead of the one shown in part (a). Part
(c) illustrates how images and pre-images of triple
intersections lead to secondary tendrils. The points
ALB, C, D and E', F in part (c) are the images
or pre-images of the points A, B, C, D, E and F in
part (b). In the transition from part (2) to past (b)
the single intersection point G splits into the three
intersection points A, B and C. The schematic plots
of parts (£) and (¢} correspond to the essential lines in
the numerically constructed plots of figures 6(a) and
6(b).

W* come close to the surface of the KAM tori and dive into the fractal jungle of Cantori and
secondary structures around the KAM tori. Of course, our symbolic dynamics with a finite
number of rules can never be able to describe complications of this type. It is only able to
describe the hyperbolic component of the invariant set.

It is possible to invent a more complicated symbolic dynamics including the secondary
tendrils for those parameter intervals in which their tips reach into some gap inside primary
or secondary tendrils. However, this symbolic dynamics would not be exact because on
higher levels these secondary tendrils also create more complicated intersection patterns
leading to side tendrils of their own, which would not be included in the improved symbolic
dynamics. Including them by a still improved symbolic dynamics would not describe the
still more complicated intersection patterns on still higher fevels etc. In the limit of arbitrarily
high levels the exact symbolic dynamics would have to include an infinite set of levels of
more complicated intersection patterns and would therefore require an infinite set of rules.

In this sense we are satisfied that our symbolic dynamics is only valid for low levels
of the hierarchy and for small values of the delay time in the time delay function. As we
shall see in the next section, for A = 3.4 our symbolic dynamics remains useful up to level

30 at least.
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5. Thermodynamical formalism

As shown in [8, 11, 12] a very powerful method to extract characteristics of the invariant
set from data obtained by asymptotic measurements is the so-called thermodynamical
formalism. The procedure is the following: let Jf"’) be the length of the interval Jf'")
in the time-delay function as defined in section 3. Form the partition sum

Z(B.m) =Y (™) ~ exp(—BF (B)m) (13)

where B is a real parameter, The last proportionality becomes valid strictly only in the limit
m — co. However, as explained above, we are mainly interested in lower levels of the
hierarchy and so we approximate SF(8) as

BFm(B) =[In(Z(B, m — 1)) —n(Z(B, mD]/!. (14)

Next we have to find a clever choice of [ and have to see whether 8F; ,(£) stabilizes as a
function of m at least in some intermediate range of m values.

For complete horseshoes without any pruning (corresponding to a complete n-ary
branching tree) it is known [8] that the choice { = | works well. As the region of large 8
is most sensitive to problems of convergence, let us do the following. Compute 85, (8)
according to (14) for [ = 1 and plot the asymptotic slope of this function versus m. The
result for A = 3.4 can be seen in figure 8. For very small values of m (i.e. m < 11) there is
no clear tendency visible. For larger values of m we see a periodicity with period 3 because
of the following reason: for large 8 the sum is dominated by the interval of greatest length.
When we climb up the branching tree along the branch containing the longest intervals of
any level (this is the branch drawn by a thick line in figure 5, it has a periodic symbolic
code with the basic block +11 repeated indefinitely) then we encounter symbols periodically
with period 3 and also the ratio of the length of the intervals of consecutive levels changes
periodically with period 3. This length ratio (i.e. l}"’m /l}"’) along this path) determines the
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Figure 8. Asymptotic slope for 8 — oo of the free energy function §F|,(8) obtained from
(14} with [ = | versus the level m. The parameter A = 3.4 € Ij;2.
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asymptotic slope of 8F; ,,(8) for 8 —» oo. Climbing up the branching tree by three steps
along this path leads to the same local situation and therefore also to the same length ratio
regardless of the value of m. Therefore, ! = 3 is the appropriate choice for the evaluation
of (14) for A € I1;». For very large values of m the periodicity fades out (for A = 3.4 we
did not reach this region in our numerical computations). Then the non-hyperbolic effects
not contained in our approximate symbolic description start to dominate the behaviour of
the system—the branching tree of figure 5 becomes invalid, there are further divisions of
intervals and the position of the longest interval starts to jump in an unpredictable way
between various branches from level to level.

We do not encounter convergence prablems for small values of 8 since this convergence
behaviour is directed by the shortest intervals. They are always the intervals whose symbolic
code consists of Os only. This sequence always has a period 1 and therefore always fits
together with any other period occuring in the range of large B values.

The value my, of m at which non-hyperbolic effects start to dominate depends on the
exact value of A. As an inspection of figure 1 shows, the value of B increases monotonically
with increasing A inside the interval [;,». This indicates that myy, s quite small near the
upper end of I3, in fact it is so small that the region of periodic behaviour of the slope of
BF: »{B) as shown in figure § does not exist at all for these values of A.

Next we choose a value of m well inside the range of periodic behaviour of figure 8,
namely m = 17, and plot the resulting function, 5 F; 17(8) computed according to (14) with
I =3 and m = 17 versus 8, in figure 9 as a full curve, This plot provides the following
characteristics of the hyperbolic component of the invariant set [8]: the topological entropy
is Kg = —BF(f) at § =0, the fractal dimension Dy is the value of § at which 8F(8) =0,
the escape rate « = F(l) and the Lyapunov exponent A is the slope of this function at

2.0

8 F(g)

1.0 20 3.0
B

Figure 9. Plot of 8 Fi . (8) versus § computed according to (i4). The full curve is form = 17,
!'=3and A = 34 € f1p as in figure 8. The broken curve is for m = 17, ! = § and
A = 4.96 € f34 and the chain eurve is for m = 17,/ = ¢ and A = 2.4 € {y5. The dotied line
is the tangent to the solid line at § = L.
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B = 1. The tangent to the curve at 8 = 1 (the dotted line in figure 9) intersects the S-axis
at the value of the information dimension D, and the vertical axis at minus the value of the
metric entropy Ky, We read off the following numerical values: Ky = 0.54, Dy = 0.57,
k=026, ) =048, D, = 0.46, K; =0.22, Of course, these values only characterize the
short-time properties of the systems, strictly speaking they apply to the time scale between
14 and 17. For long times the non-hyperbolic effects take over and it is known [22,23]
that in this case A == k = 0, Dy =1 expressing the stickiness of the fractal surface of
KAM tori. These values correspond to the fact that for non-hyperbolic systems the true free
energy function computed according to (13) in the limit m -> oo (expressing the long-time
behaviour of the system) becomes identically zero for 2 > 1. For comparison the broken
curve and the chain curve in figure 9 give BFs 17(8) for A =4.96 € I3 and BF; 17(8) for
A = 2.4 € Iy respectively.

WE

(g} (b}

Figure 10. Schematic plot of the homoclinic tangle of xy for o = § in part {2} and o = % in
part (b). Tendrils up to level 3 are included.

6. Different intervals I,

So far we have considered the particular parameter interval I),> only. In figure 1 there are
many more intervals of slow variation of exp(Kp) and next let us expiain how we can give
an approximate symbolic dynamics for these other intervals. Because the homoclinic grid
for the complete horseshoe as shown in figure 3(¢/) has a binary organisation, it is useful to
construct the parameter « in an adapted binary way as explained above.

The next simple cases to be investigated are the cases @ = % and @ = %. The schematic
plot of the tendrils for ¢ = ﬁ is given in figure 10(q). The comesponding branching
tree is shown in figure 11. The periodicity along the branch of the longest intervals (the
thick line in the figure corresponding to a periodic symbolic code with basic block 11++
repeated indefinitely) is four. Therefore we need ! = 4 in this case for the evaluation of
the thermodynamics according to (14) (see the chain curve in figure 9). Each entry of the
branching tree is labelled by the last two digits of its symbolic code. The grammatical rules

for o = } are:
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o after symbol strings ending on 0 or +1 or ++ it is atlowed to attach O or |
after symbol strings ending on OI or 11 or 1+ it is only allowed to attach +.
The characteristic polynomial of the corresponding transition matrix is
P1/4(v) = L’z(b?‘I - U3 — 2) (15)

0
00— 3}

+0 o1

0t 1+

11 1+

o
+1 o1
*

0
I o

01 1+ ++ L1+

+1

a0 01 1+ =+ +3
—+1

B 1+
o0 ++
00 01

oo

1+

00 01
—_—

Figure 11. Branching tree for o = ?1- The branch containing the longest interval of cach level
is plotted by a thick line, Each entry is labelled by the last two digits of its symbolic code.

and the corresponding recurrence relation for the number of intervals on level m is
Zm, ;) =2Z(m—1,3)+2Z(m—4,1%). (16)

The largest root of P4 is v = 1.54... which coincides with the value of B found
numerically in figure 1 for the corresponding step around A = 2.5.

More generally, for any o = 27 the symbol + always comes in blocks of length &
only, such a string begins after 01 and is followed by either 0 or 1. The non-trivial factor
of the characteristic polynomial is

Pre(v) == v*T2 _ yk+l _ (17)

where the complete polynomial contains an additional factor consisting of a pure power of
v. The corresponding recurrence relation for the number of intervals on level m is

Zim, 2 =2Zm - 1,27 +2Z(m -2 —k,27). (18)
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Figure 12, Branching tree for o = 33. The branch containing the longest interval of each level
is plotted by a thick line. Each entry is labelled by the last four digits of its symbolic code.

These rules are also valid for £ = 0 in which case they describe correctly the complete case
for A > A;.

Things become a little more complicated if in & = r2~* we have r s 1. Then it
sometimes happens that an interval is cut into three subintervals during the transition from
one level to the next level. In such a case we append the symbol + to the label of the middle
subinterval, Let us look closer at the case o0 = %: the schematic plot of the homoclinic grid
is given in figure 10(%) and the branching tree obtained from either the time-delay function or
the homoclinic grid is given in figure 12. Again the branch containing the longest intervals
of each level is plotted by a thick line, it corresponds to a periodic symbolic code with basic
block 1014+ repeated indefinitely. The period for the convergence of the thermodynamics
following from it is / = 5 (see the dashed line in figure 9). Now the grammatical rules are
more complicated, we need to know the last four digits of the symbolic code of each entry
to decide how the tree is continued. For the lowest levels of the tree we can imagine again,
that each symbolic code is supplemented to the left by a string of O's of arbitrary length.
The grammatical rules are: -

o after symbol strings ending on O or ++ or ++01 or ++11 or 111 or 011 or +1 it is
allowed to attach 0 or |
after symbol strings ending on 1+ it is allowed to attach Q or | or +
after symbol strings ending on 001 or 101 or 1401 or 1+11 it is only allowed to artach
+.
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The corresponding non-trivial factor in the characteristic polynomial of the transition
matrix is

Pygw)y=v’ ~2v* ¥ -2 120 -2, (19)

Its largest root is close to v = 1.9 coinciding with the numerical value of B extracted from
figure 1 for A around A =49.

When we try to treat all values of o along similar lines, we must notice two additional
complications: first, not all values of & = r2~* really lead to cases for which the tendrils of
WY and W*® reach into empty gaps. Let us illustrate this phenomenon for the case o = %
Starting from the schematic plot of the complete homoclinic tangle shown in figure 3(d) we
would expect that the case @ = 3/8 occurs when the tip of the tendril of level 1 has shrunk
such that it reaches into the gap created by the tendril of level 3 and the tips of the tendrils
of level 2 reach into the gaps created by the other tendrils of level 2. In the schematic plot
in figure 13 we have plotted by broken lines the gaps created by W* up to level 3 in the
complete case. The label 3 indicates that particular gap of level 3 into which we expect the
tip of the tendril of level 1 of W* to reach. Similarly, the label 2 indicates that particular
gap of level 2 into which we expect the tip of the tendrl of level 2 of W® to reach. The
actual tendrils of levels 2 and 3 of W* are also plotted. Now the problem becomes evident:
for A € I35 the tendrils of W* have already withdrawn from this part of the phase space so
that the gaps do no longer exist. Therefore, the interval J3/g does not exist and in figure 1
we do not find any nearly horizontal step corresponding to & = %.

Figure 13. The solid line gives a schematic view of the homaclinic tangle in 2 parameter range
in which we would expect the interval /34 to exist. The broken line shows the gaps created by
WY as they appear in the complete horseshoe shown in figure 3(d). The labels 2 and 3 mark a
gap of level 2 and a gap of level 3 which have already disappeared for the actwal value of the
parameter.

The second difficulty can be explained best for the example of « = g- Let us first, in
figure 14, give a schematic view of a small section of the homoclinic grid for three different
values of A. We plot short segments of gaps of levels 2, 4, 5 created by W* intersecting
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Figure 14. Schematic view of a small section of the homoclinic tangle for A below, inside and
above the interval loyg in parts (a.b.¢} respectively. Some segments of the tendrils of W* are
shown and labelled by their level numbers. The interior of the tendrils of W* is dotted in that
part which lies inside of R. From W" only the arc L, — is shown and labelled by W

the local branch of WY, The tendril of W*® of level 3 has already withdrawn so that we
do not find intersections of it with W® in this region. Now we have to decide which of
these three situations is the appropriate one for & = % We choose the situation shown in
figure 14{b) for the following reason. In situation (a) the fate of tendrils of W* of higher
levels is not yet determined. Tendrils running between the ones of level 4 and 5 shown in
the figure either intersect WY or can not, depending on the value of A. Similarly, for case
(c) the fate of higher level tendrils running between the tendrils of levels 2 and 3 is not yet
clear and changes under variations of A. On the other hand, we have decided to choose
the intervals I, such that for variations of A within I, no homoclinic tangencies of primary
tendrils are allowed to occur. Therefore only the range of A values for which a situation of
the qualitative structure of figure 14(b) occurs can belong to I,. In this case alt higher level
tendrils running between those of levels 2 and 5 do not intersect W* in the region shown
and all tendrils running between those of levels 4 and 5 intersect W" twice. Only in case
{b) is the intersection structure of higher level tendrils clearly determined and independent
of small changes of A within ;. For I7/s chosen this way it is straight foreward to obtain
the branching tree and to construct from it the following set of grammatical rules for the
approximate symbolic dynamics:

o after symbol strings ending on 0 or ++001 or 1101 or ++101 or 0101 or ++01 or 11 or
+1 or 44+ it is allowed to append O or 1

o after symbol strings ending on 0001 or 1001 or 14001 or 1+101 or 1+01 it is only
allowed to append +

o after symbol strings ending on 1++ or 1+ it is allowed to append 0, 1 or +.

The interval Iz can be seen quite clearly in figure 1 at a height of B = 1.97 around the
parameter value A = 5.3. So far we do not yet know, in which other intervals difficulties
occur corresponding to the ones just explained for 3.

To complete all cases of k = 3, we finally give the grammatical rules for o = 5/8:

after symbol strings ending on 0 or +1 or +++ it is allowed to append O or |
after symbol strings ending on 01 or 11 or 1++ it is only allowed to append +
e after symbol strings ending on 1+ it is allowed to append O or 1 or +.

The corresponding non-trivial factor in the characteristic polynomial is

Psgvy = —vt -2 -2, (20)
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Its largest root is close to v = 1.8. The interval Is;g is very small and hard to identify in
figure 1.

Generally, we noticed that for ¢ = r27* the symbol + can occur in blocks of maximal
length £. And the branch in the branching tree which contains the longest intervals is the one
which contains these blocks of +s in the maximally allowed density. The symbol + always
corresponds to the largest ratio of the length of the intervals of two consecutive levels.
There is never a fixed point in the system corresponding to the symbol +. Accordingly,
an unlimited string of only +s never occurs. An unlimited string of 1s corresponds to the
fixed point x; and this string is only allowed as long as the fixed point x; is accessible
to scattering trajectories. The point x, becomes elliptic for A < 4 only, however, for
A < 4.7...itis already screened behind some KAM lines and scattering trajectories can not
come into its vicinity, Accordingly unlimited strings of 1s do not occur in the symbolic
dynamics of the branching tree for the time-delay function for A < 4.7... and they are not
allowed in the grammatical rules for « = % which belongs to a value of A just below 4.7.
On the other hand, unlimited strings of 1s are allowed by the grammatical rules for « values
corresponding to A > 4.7 ., .. See e.g. the grammatical rules for o = % oro = % After O
it is always allowed to attach either 0 or 1 independently of the value of . Accordingly
the unlimited string of only Os is always allowed. This is caused by the accessibility of the
unstable fixed point xg to scattering trajectories for all values of A.

For all values of o there are analogous restrictions for the validity of the approximate
symbolic dynamics like the ones we have described in section 4 for & = %

7. Discussion

For a particular model system having a non-hyperbolic invariant set in the form of an
incomplete horseshoe we have constructed an approximate symbolic dynamics valid in
some parameter intervals. The essential basic observation, which allowed this construction
to be done, was that there are parameter intervals in which the tips of the primary tendrils
of the invariant manifolds do not create homoclinic bifurcations under small changes of the
parameter. This occurs due to the gaps which are empty of invariant manifolds. 1t only can
happen in an open system describing scattering dynamics, In a closed Hamiltonian system
the invariant manifolds are dense in a connected subset of the phase space not containing
KaM tori. Therefore our ideas can only be applied to scattering systems or to systems with
transient chaos.

The symbolic dynamics constructed is only approximate and describes the hyperbolic
component of the invariant set. This is quite acceptable for scattering systems which are
rather open because of the following: a real scattering experiment is done with many
particles where initial conditions are evenly distributed over a wide range. Most particles
run on trajectories which stay in the interaction region for a short time only. They come
in contact with the hyperbolic component of the invariant set only. They do not have
the necessary time to dive into the non-hyperbolic regions of the phase space sitting on
the surface of KAM tori. Only very few trajectories (i.e. only a tiny fraction of all initial
conditions) allow the particles to come sufficiently close to the KAM tori to be influenced
essentially by non-hyperbolic effects. In this sense a good description of the hyperbolic
component allows one to understand most properties of the scattering behaviour to a good
approximation. This argument may fail for systems with tiny leaks only.

We have one particular symbolic dynamics for each of the parameter intervals ;-
defined in section 6. Of course, for large k these intervals become very short so that it will
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be difficult to identify them. To do this we have to find values of A for which the tips of
the high level tendrils (they change rapidly under variation of A) reach into the small gaps
created by other tendrils of high levels. At the moment we do not know whether these
intervals are dense on the whole parameter axis or whether there are open intervals on the
A-axis in which homoclinic tangencies of the primary tendrils are dense under variation
of 4.

So far our considerations have been presented for an iterated map. How can something
similar be done for systems with continuous time? For such systems it is difficult to get the
branching tree from the sole knowledge of the time-delay function. For time continuous
systems the minimal value of D¢ within some interval of continuity is not an integer
multiple of some basic time unit and therefore it is not clear how we obtain the hierarchical
organisation of the intervals without further knowledge. However, we need this organisation
to select all intervals of a particular level which we need as input for the thermodynamical
formalism. Here the knowledge of an approximate symbolic dynamics can be of paramount
importance because it allows the construction of a branching tree which tells us how to
divide the intervals into the various levels of hierarchy. With the aid of the ideas presented
in this paper such an approximate symbolic dynamics can be obtained from the homoclinic
tangle of an appropriate periodic orbit in a Poincaré section of the system. The appropriate
point is usually the fixed point corresponding to the outermost periodic orbit sitting on top
of the barrier of the potential which divides the position space into the inside and the outside
region. For these particular periodic orbits considerations are valid which are analogs of
the statements about the fixed point xo given at the end of section 3. Instead of a Poincaré
return map we can also use a stroboscopic map of a time continuous system as well. This
possibility may order things differently, but is not any worse in principle.

As shown in [24] the knowledge of a symbolic dynamics is helpful to organize the
summation of the semi-classical sum for the quantum scattering amplitude and to check for
its absolute convergence. Of course, the symbolic dynamics is irrelevant to the questions
whether the sum converges or not,
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