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Abstract. We investigate a parameter-dependent map describing a chaotic scattering system. In 
panmeter ranges leading to an incomplete horseshoe we camS1Tuct an approximate symbolic 
dynamics which describes quite well the hyperbolic component of the invariant set. Its 
grammatical NI= are correlated with the convergence properties of fhe thermodynamical 
formalism for the measures characterizing the invariant set. 

1. Introduction 

It has always been the task of scattering theory to find out, how properties of a system 
can be extracted from asymptotic measurements on the projectile, in particular from the 
deflection function, the time-delay function or similar objects. In the case of chaotic 
scattering (for reviews see [ 1,2]) these functions contain singularities on a fractal subset of 
their domain. Scattering chaos of this type has been found in a large variety of systems, 
e.g. in classical models for molecular reactions (for these processes see the review [3]), in 
model computations for satellite encounters [4], for vortex scattering in hydrodynamics [5 ] ,  
in soliton scattering [6], for particle transport in an open hydrodynamical flow [7] and for 
various models of potential scattering. Therefore, any improvement in our understanding of 
chaotic scattering and in particular any enlargement of ow methods to attack such systems 
has the chance to be useful in a wide variety of physical subfields. 

In the case of chaos and its associated fractal structures we must find out how we 
extract from these structures quantities which characterize the complicated motion inside 
the interaction region. Chaotic scattering is the Hamiltonian version of transient chaos [8]. 
The skeleton of all complicated motion is a chaotic invariant set (the chaotic saddle) in 
the phase space. In its vicinity scattering trajectories are kept for a while and trace out 
temporarily the type of motion performed permanently by the localized chaotic trajectories. 
The chaotic set has a relatively simple structure only when it is completely hyperbolic. For 
an example of a complete description of the invariant set in such a case see [9]. In the 
completely hyperbolic case the invariant set consists of unstable periodic orbits (which are 
all hyperbolic in this case) and their homoclinic and heteroclinic connections only, it does 
not contain KAM tori, cantori or any subsets of marginal stability. It is a pure example of the 
type of invariant set occuring in Smale’s horseshoe construction [IO]. Its fractal structure 
and the measures characterizing it as e.g. dimension, entropy, Lyapunov exponents, escape 
rate, etc can be extracted from scattering data, in particular from the arrangement of the 
singularities in the deflection function or the time delay function. The appropriate method to 
do this is the thermodynamical formalism [I 1, 121. In the non-hyperbolic case the invariant 
set contains KAM surfaces and cantori around them in addition. They are more sticky than 
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purely hyperbolic sets [13-15] and make a complete description of the invariant set very 

Fortunately, in most cases the non-hyperbolic influences become noticable only on the 
long-time behaviour and on very fine resolution. Many properties of the system and its 
behaviour on short time-scales are dominated by the hyperbolic component of the invariant 
set. Therefore it is worth while to find ways to extract the properties of this component 
from scattering functions. 

In this paper we shall investigate such possibilities. For simplicity we take an iterated 
map describing the unbound motion of a kicked particle in a onedimensional position space. 
The map contains one free parameter such that the system is completely hyperbolic for large 
parameter values and pruning sets in below a threshold value of this parameter. For a few 
examples of a symbolic dynamic with pruning for an open system see [16-181. For some 
general considerations of pruned symbolic dynamics and their evaluation see [19,20]. 

Our model and its parameter dependence will be presented in section 2. We investigate 
the homoclinic tangle of the most important unstable fixed point and derive from it 
possibilities for an approximate symbolic dynamics, first for one particular small range 
of parameter values. In section 3 we compare the structure of the homoclinic tangle with 
the structure of singularities in the time-delay function. Section 4 shows the limitations of 
the approximate symbolic dynamics. In section 5 we can use our knowledge to understand 
the convergence properties of the thermodynamical formalism for the extraction of measures 
of the hyperbolic component of the invariant set. Section 6 shows how these ideas can be 
realized for more general parameter ranges and section 7 contains concluding remarks. 

B Rucked and C Jung 

complicated. ~~ 

2. The model and its parameter dependence 

We describe the motion of a kicked particle on the one-dimensional line by the iterated map 
P 

q(n + 1) =4(n) + p(n)  p ( n  + 1) = p ( n )  + A f ( q ( n  + 1 ) ) .  (1) 

Here q is the position coordinate, p i s  the momentum coordinate, n is the discrete time, 
and A is a free parameter. For the force function we take the particular function 

f ( q )  = q(q  - I)exp(-q),  ( 2 )  

The phase space is the q.  p-plane. By a simple transformation the map can be cast into the 
form 

Q(n t 1) = i ( n )  + TFGt) iKn t 1) = F(n) + f(Q(n + 1)  (3) 

where now the free parameter T is the time between two consecutive kicks. We found it 
more convenient to work with the form (1). 

The force given in ( 2 )  corresponds to the potential 

V ( q )  = i m d s s ( s  - 1) exp(-s) = (q2 + q + I )  exp(-q) . (4) 

Our motivation to choose a map of this kind is two-fold. First, we are interested in 
a parameter dependent smooth map in contrast to the non-smooth systems investigated 
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in [16-181. Accordingly, in our system homoclinicheteroclinic bifurcations are generic 
tangencies, whereas in non-smooth maps a corner of one manifold hits another manifold. 
Thereby we hope to obtain the generic, structurally stable scenario. Second, the potential ( 4 )  
has the structure of a radial potential with centrifugal barrier similar to potentials occuring 
in atomic scattering processes. 

The potential ( 4 )  has a minimum at q = 0 and a relative maximum at q = 1. The 
maximum leads to the fixed point 

xo = (40, PO) = (1,O) (5) 

of the equations of motion ( I )  and the minimum of the potential leads to the fixed point 

X I  = (SI 3 PI ) = (0,O) . (6) 

The point xo is always an unstable hyperbolic point. The eigenvalues of the Jacobi matrix 
of P at xo depend on A and are given by 

h1.2 = 1 + A p e  f ( A l e  + A 2 / 4 e 2 ) 1 / 2 .  (7) 

At the point XI the eigenvalues of the Jacobi matrix of P are 

~ 1 . 2  = 1 - A I 2  zk ( - A  + A 2 / 4 ) I / ’ .  (8) 

The point XI turns from elliptic to inverse hyperbolic at A = 4 .  
At A = 0 the system is completely integrable, while for A # 0 we find transverse 

homoclinic intersections of the invariant manifolds of xo. Accordingly for A # 0 the map 
P contains topological chaos. For A > A1 5.5 the system is completely hyperbolic. Then 
it has a complete Smale horseshoe and can be described by a binary symbolic dynamics 
without any pruning and therefore with trivial grammatical rules. For A < A I  pruning sets 
in, the horseshoe becomes incomplete and we find a mixed phase space having KAM tori. 

Fortunately, the KAM tori do not have a large influence on the scattering behaviour and 
therefore let us try to describe the hyperbolic part of the invariant set. For some parameter 
values this can be done in a rather complete way. The motivation for the choice of the 
appropriate parameter intervals comes from the plot of the topological entropy KO, or of the 
corresponding branching ratio B = exp(Ko), of the invariant set. Let us first present some 
results, for it  is more convenient to explain later how these results have been obtained in 
detail. Figure 1 shows a plot of B versus A .  Most striking are the steps in this function in 
which B changes only slowly. We have the impression that there are intervals in which no 
important bifurcations occur and in which the grammatical rules for the symbolic dynamics 
to be constructed do not change drastically. A few of this steps in the figure are labelled 
by a number 01 whose meaning will become clear later. 

The most prominent step is the interval 11p = ( A l p - ,  A l p + )  (labelled by 4 in the 
figure). The nature of the relative stability of the dynamics inside this interval and the 
absence of important bifurcations can be understood from a plot of the invariant manifolds 
of xo as presented in figure 2. All homoclinic intersections and also all other points of 
the invariant set are contained in the curvilinear rectangle R with the corners xo, y ~ ,  y z ,  y3. 
Most important is the observation that the tips of the tendrils of the manifolds reach into 
empty space, i.e. into gaps which are free of manifolds. Therefore a small stretching or 
compression of the tendrils does not produce homoclinic tangencies. Now we have to 
realize that a change of A has the effect on the manifolds that they change their length and 
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6 4 -  
I 

Figure 1. Branching ratio E versus parmeter A computed from the number of intervals of the 
various levels in the time-delay function. A few of the intervals 1. are indicated and Iaklled 
by 01. 

Figure 1. Numerical construction of the invariant manifolds of the fixed point xo for the 
parameter value A = 3.4, which lies inside 1 p  but close to it$ lower end. All tendrils up to 
level 4 are plotted. 

can produce homoclinic bifurcations whenever the tip of a tendril hits another manifold. 
However, when the tips reach into areas free of other manifolds then a small change of 
the length avoids tangencies and homoclinic bifurcations at least in some small interval of 
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Figure 3. Schematic plot of the tendrils of the invariant manifolds ofxo. Tendrils up to level 2 
are included. Pm ( a )  shows the situation far A < A , p ,  pan (b) shows the situation for 
A I +  c A < A l p + .  part ( c )  shows the Situation for A 5 A,12+. part (d )  s h o w  the case of a 
complete horseshoe for A > A l .  The hatched areas indicate gaps inside tendrils of Wy which 
are free of higher level tendrils of W". The dotted m a s  indicate gaps inside tendrils of W 3  
which are free o f  higher level tendrils of W'. 

values of A. This is exactly what happens in the interval 11/2 and in other intervals of slow 
change of KO. In these particular intervals we hope to avoid many of the problems which 
occur generally in wild hyperbolic sets as described in section ,6.7 of [21]. 

Let us explain this effect in detail with the aid of a schematic plot, figure 3. For A just 
below A l p  we have a situation for the stable and unstable manifolds W' and W" of xo as 
shown in figure 3 ( a ) .  Also here all homoclinic intersections are located inside the rectangle 
R with the corners x 0 ,  y l ,  yz, y3 .  The tendrils of the hierarchy levels 1 and 2 are plotted as 
the labels on the tips of the tendrils indicate. The tip of the tendril of level m is labelled 
by I,,," or t,,,$ for the unstable and the stable manifold respectively. tm+l," is the image of 
tm," under P and f m + l , s  is the pre-image of tm,$ under P. The hatched areas are gaps inside 
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tendrils of W" and these areas are void of further tendrils of W" coming from higher levels 
in the hierarchy. All higher level tendrils of W' are contained in the unhatched areas. In 
the same way the dotted areas mark the gaps inside tendrils of W s  and these areas are void 
of further tendrils of W s  coming from higher levels. Therefore in the situation as shown 
in figure 3(a) the tips of the tendrils will i n  general undergo homoclinic tangencies when 
their length is varied during a small change of A 

Next, let A increase somewhat such that a situation like the one in figure 3(b) is created. 
Now the tips of the tendrils (the ones of higher levels not plotted in the figure as well as the 
ones shown in figure 3(b)) are either outside of R (as the ones of level 2) or lie in the hatched 
area (as the ones of level I). When the tips of two tendrils intersect each other in 2 points 
(as the tips of the tendrils of level 1 do) then we count this also as a situation i n  which the 
tip of one tendril lies inside the interior of the other tendril. We have to take a point in 
the small arc lying in the hatched/dotted area as the true tip. Therefore small changes of 
their length (small changes of A )  do not cause homoclinic bifurcations. We have a situation 
with A E 11/2. If A becomes larger than Alp+,  then we find a situation like the one in 
figure 3(c). Now the tips of the tendrils lie outside of the gaps again and accordingly they 
can again create homoclinic tangencies at small variations of A. For comparison figure 3(d) 
shows the situation for A just above A I .  Here all tips of tendrils lie outside of R.  

With the aid of figure 3 we can also explain more precisely how we divide the invariant 
manifolds into the various tendrils. First we mark points zu,, on W" and iJ., on W s  such 
that one of those points lies on each arc of the invariant manifolds which lies outside of 
the fundamental rectangle R.  ?he first~one has index 0 the other ones have as indices the 
natural numbers according to their order along the manifolds. It is natural to make the 
choice such that zu++l is the image of zu,* under P and zs,*+l is the pre-image of z ~ , ~ .  
By Lu,m or Ls, ,  we denote the arcs between zu., and z " , ~ + I  or between and zs,,+l 
respectively. The local arc of W", i.e. the one from xg to zU,o, we denote by Lu,- ,  in the 
same way the local arc of Ws, i.e. the one from xo to zS,o is denoted by L8,-. Lu,m is the 
image of L.,o under Pm and L , ,  is 'lie image of L,,o under P-". When we speak of the 
tendril of level m in the following we mean the arc Lu,, or L , ,  respectively or the parts 
of them which lie inside R .  

The value of the parameter 01 is determined as follows. a has the value r2-' if the 
tip of the tendril of level 1 lies inside that gap of level k which is the rth of all gaps of 
level k ,  where we count them as follows. Consider all the gaps of W" (for W 5  everything 
goes symmetrically) in the complete horseshoe construction as shown in figure 3(d). There 
are 2k-1 ones created by the tendril of level k. Count them with only the odd numbers 
(to avoid cancellations between numerator and denominator in 01)  from 1 to 2' - 1 in the 
order in which they intersect the arc (xo.  yz) of Ws. i.e. give the number 1 to the gap lying 
closest to xo, the number 3 to the next one, etc and the number 2' - 1 to the one lying 
closest to yz. For lower values of A all the gaps which remain keep the same number as 
in the complete case, even though for A c AI  some gaps in between have disappeared. A 
comparison of the schematic plots of figures 3(b), 3(d ) ,  10(n), 10(b), 1 3 ,  where the values 
of 01 are i, 1, $, 

For these rules we have only taken into account the primary tendrils as shown in figure 3. 
We have disregarded the secondary tendrils as they will be described in section 4. 

and respectively, may help to get a feeling for this definition of 01. 

3. The  time-delay function and its hierarchical organization 

Now we are in the position to explain the construction of the time-delay function: a 
scattering trajectory has the time-delay Dr = n, if n of its points lie inside of R .  To 
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construct the time-delay function we have first to give a scheme of how to label asymptotes 
of scattering trajectories. In the asymptotic region (i.e. in the region q + fm) the force 
converges to zero rapidly, so that the asymptotic form of the map P becomes P, given by 

In the asymptotic region the momentum pinlout is conserved and can be used as one of the 
labels. To get the second one, we take an interval Q(pi.) = (91, q2) of q values where 
q 2  = q1 - pin and choose 91 independent of pi. and sufficiently large such that the whole 
interval lies well in the asymptotic region. Each asymptote with momentum pin steps exactly 
once into Q(pi.) at the point qinlaut and this particular value of q is used as the second 
label for the asymptote. To obtain the timedelay function Dt (qi"; pi.) fix some convenient 
choice of pin (here convenient means that the interval Q(pi.) intersects the stable manifolds 
of the invariant set transversally), scan the interval Q(pin) and plot Df versus qi,-figure 4 
shows the example for A = 3.4, pin = -4. We have chosen q1 = 7. Part ( U )  shows this 
function on its whole domain Q(pi.). In most parts it is not very interesting. Only the 
small part around qin = 10.05 contains all the structure we are interested in. Part (6) gives 
a magnification of this interesting subinterval. We see a castle-like structure where each 
gap between two consecutive singularities is surrounded by smaller non-singular intervals 
with a higher value of Dt.  This structure is continued ad infinitum in a fractal hierarchy. 
Part ( c )  gives a further magnification of a small part of figure 4(6) to show the self-similar 
structure of the whole function. 

Several horizontal lines (labelled by level numbers in) separated vertically by a distance 
of 1 are included. The one with label m lies at the height Dr, = 4.5+m. These horizontal 
lines cut out intervals .I/"') with the following properties: the boundary points of JP' are 
infinities of Dr, inside of J/"') the value of D f  is always larger than Dr,,,, and the values of 
Dt in the adjacent non-singular intervals outside of JP) are smaller than Dt,". A few of 
these intervals are indicated in the figures. Let the number of disjoint intervals JY) on level 
m be N(m) .  Then in the limit of large m we expect N ( m )  to grow like N ( m )  m exp(mK0). 
where KO is the topological entropy of the system. The value of B = exp(K0) obtained by 
this method is the quantity plotted in figure 1 as function of the parameter A. 

Next we have to correlate the structure in the time-delay function with the homoclinic 
tangle shown in figures 2 and 3, and in particular with the structure of the intersections 
of W" with the local branch of W s  (i.e. the piece between xo and y3 which is a part of 
the arc &). In particular, the hierarchical organisation of both structures is the same and 
should be described by the same symbolic dynamics. Figure 5 shows the corresponding 
branching tree. First let us explain how this branching tree taken together with its mirror 
image contains the castle-like structure of the time-delay function. On level - 1  we cut 
out that part of Q(pi,) in which Dt > 3.5. This is the interval Jj-') and it contains the 
complete castle structure. At level 0 (i.e. in the height of the horizontal line at Dto = 4.5) 
a first gap occurs which cuts away a middle piece of J / - ' )  and two connected subintervals JY and JF' are created on level 0. To the right one (i.e. to J:") the branching tree as 
shown in figure 5 applies and to the left one (i.e. to JY') the mirror image of figure 5 
applies, Going from level 0 to level 1 each of the two intervals of level 0 is cut into two 
pieces of level I .  To the two outer intervals we give the label 0, to the two inner ones we 
give the label I .  In the next step, the one from level 1 to level 2, the two outer intervals 
are cut, the two inner ones are not cut. Here and in the higher levels we construct labels by 
the following rules: if an interval of level m is not cut during the transition from level in to 
level m + 1, then the resulting interval on level m + 1 get its label by adding a t to the label 
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20.0 

0.0 1o.m 10.04 10.06 10.08 

'in 

Figure 4. Plot of the time-delay function of system (I) for the parameter value A = 3.4 
and initial conditions pm = -4. Pan (a)  shows the function on its whole domain, i.e. for 
qin E (7. 1 I ) ,  pan (b)  gives the magnification of the interesting pan containing all singularities, 
pan (c) shows a further magnification to demonstme lhe self similarity. Several horizontal lines 
at heights DI, = 4.5 t m me included and labelled by m. They indicate how the intervals J,'"' 
are cut out. A few of these intervals are indicated and labelled in the figures. 

of its parent interval of level m. If an interval of level m is cut into two pieces during the 
transition from level m to level m + 1 then the labels of the resulting two new intervals of 
level m + 1 are obtained by adding either a 0 or a 1 to the label of the parent interval. The 
rule for the distribution of the 0 and 1 is as follows in the right half of the castle (in the left 
half it is just the other way around):  if in the label of the parent interval there is an even 
number of 1s then the new interval  on^ the right side gets the 0 and the new interval on the 
left side the 1. For an odd number of 1's in the label of the parent interval it is the other 
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3.0 ' 
tO.0339 10.0344 10.0349 

in 

Figure 4. (Continued) 

Figure 5. Branching tree for A E 11,~. The branch containing the longest intervals of each level 
is plotted by a thick line. Each e n y  is labelled by the last two digits of its symbolic code. 
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way around. This rule takes into acco,unt that the fixed point XI (which corresponds to the 
symbol 1) is inverse hyperbolic and the map inverts the orientation in its vicinity. These 
rules also go over into the standard symbolic dynamics of the horseshoe in the complete 
case. figure 5 shows the tree up to level 6 for the case of (Y = $. Because only the last 
two digits of all labels are important for the following, we write only these last two digits 
in the figure. 

Now let us compare this branching tree with the intersection structure between Wu 
and W s  along the interval Lu,- as shown in figures 2 and 3 .  Regarding only tendrils up 
to hierarchy level 0 we obtain only the single interval JF’ = (XO.  y3). Going next up to 
hierarchy level I the tendril of level 1 of W s  cuts a gap into the middle of J,(’) leaving 
two subintervals, one from xo to y4 which we call J i ’ ) ,  the other one from y5 to y3 which 
we call JF’ .  The interval I,(’) is not cut any further by the tendril of level 2 of W s  and 
it coincides with the interval J r )  of level 2 whereas the interval J;’ )  is cut by L,J into 
the two subintervals Ji” and J;’) of level 2. If we continue this scheme for higher levels 
then we repeat exactly the branching scheme of the delay function as presented in figure 5. 
Of course, for the intervals along Ls,- we use the same symbolic codes again as for the 
intervals in the time-delay function. ,In this way the delay function reflects the smcture 
created by the homoclinic tangle of the outermost hyperbolic fixed point. We can formulate 
the grammatical rules in the form that we say which symbols are allowed to be appended 
on an existing string. As we shall see the rules depend on the last two digits of the already 
present string. In the case that the present string has length 0 or I we can imagine that it 
is supplemented to the left by a string of 0’s of arbitrary length. 

The structure of the branching tree for A E I l j 2  can be condensed into the following 5 
rules: 

after symbol strings ending on O ~ i t  is allowed to attach either 0 or 1 
after symbol strings ending on 01 it is only allowed to attach t 
after symbol strings ending on 11 it is only allowed to attach t 
after symbol strings ending on +I-it is allowed to attach either 0 or 1 
after symbol strings ending on It i t  is allowed to attach either 0 or I .  

These rules lead to the following recursion relation for the number Z(m, l/2) of intervals 
which occur in the branching tree for A E I I / ~  on level m: 

B Rucked and C Jung 

1 1 1 
2 2 2 

~ ( m ,  -) = z ( m  - 1, -) t 2 z ( m  - 3, -) 

To construct the transfer matrix M for the above rules, take the five end pieces ei of symbol 
strings considered in the grammatical rules in the above order: el = 0, e2 = 01, e )  = 11, 
e4 = +1, e5 = I+.  The matrix element .U,,, has the value I ,  if it is allowed to attach a 
symbol to a string ending on e, in such a way that the new end becomes e j .  Mi,j  has the 
value 0 otherwise. We obtain 

(1 1) 

1 0 0 1 0  

The characteristic polynomial of M]/2 has the form 

P]/2(V) = V Z ( V 3  - U2 - 2). 
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Its non-trivial factor is consistent with the recurrence relation (IO). The largest root of P l p  
is U = 1.71 . . . which coincides with the branching ratio E for A E found in figure 1 
which has been constructed directly from the time-delay function. 

So far we have considered the invariant manifolds of the fixed point xg only. Fortunately, 
the invariant manifolds of all other unstable periodic points, which are accessible to 
scattering trajectories, show essentially the same behaviour. The accumulation points of 
homoclinic points of xo coincide with the accumulation points of homoclinic points of these 
other unstable periodic points and therefore with that part of the hyperbolic component 
of the invariant set which is accessible to scattering trajectories. Accordingly the absence 
of homoclinic bifurcations of x g  in some open parameter interval indicates the absence 
of homoclinic bifurcations in the whole part of the invariant set which is relevant for the 
scattering behaviour. Furthermore, xg is the outermost periodic point, the one sitting on top 
of the potential barrier which divides the inside and outside regions of the position space. 
Therefore, the end points of non-singular intervals in the time-delay function are given by 
initial conditions which lie on the stable manifold of x g .  So the invariant manifolds of xo are 
the ones which determine the properties of the time-delay function and the other scattering 
functions. 

4. Limitation of the symbolic dynamics 

So far we have tried to construct a symbolic description with a finite number of rules for 
a non-hyperbolic system having an incomplete horseshoe. Of course, this construction can 
only be approximate, since the exact grammar for a symbolic dynamics of such a system 
should have an infinite number of rules. In this section we show briefly what we have not 
described correctly by the construction done above and what types of errors occur. This can 
be seen best in a more detailed figure of the tendrils as shown in figures 6 and 7. Figure 6 
shows two magnifications of the numerical construction of the manifolds and figure 7 shows 
the corresponding schematic plots of the essential parts. In figure 6 the parameter value 
A = 4.15 has been chosen which still lies inside Z,,? but very close to its upper end, where 
the errors in our approximate symbolic dynamics become visible even in quite low levels 
of the hierarchy. Therefore such parameter values are better suited to demonstrate the type 
of errors which occur. However, this type of error is always the same; only for parameter 
values not so close to the upper end of the intervaI they become noticeable, only in higher 
levels of the hierarchy. The important feature in figure 6(a) is: in a place where we expect 
just one transversal intersection between W s  and IVY there are really three intersections. 
This triple intersection is marked by three small circles in the figure. Figure 7(a) gives 
a schematic view of what we expect according to our symbolic dynamics and figure 7(6) 
shows in a schematic plot what we find instead, namely a triple intersection between W s  
and W". In images and pre-images of these points under the map P this leads to secondary 
tendrils as the ones shown in figure 6(6) for the numerically constructed manifolds and 
shown in the schematic view in figure 7(c). 

These secondary tendrils can create additional homoclinic intersections not contained 
in our symbolic dynamics. And under small changes of A the tips of these secondary 
tendrils can undergo homoclinic tangencies also in parameter intervals in which there are no 
homoclinic bifurcations created by the tips of the primary tendrils. The secondary structure 
shown in figure 6(a) is the one occuring on the lowest level of the hierarchy (level 5 in 
the case of A = 4.15) and at this level it is not yet noticable in the time-delay function. 
There it occurs for the first time at level 10, i.e. at the level at which the secondary tendrils 
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Figure 6. Small p a l  of the homoclinic tangle of XI) for the parameter value A = 4.15. In p a l  
((1) note the triple intenection. marked by circles, which is not contained in our approximate 
symbolic description. Pan (6)  shows m example of how the images and pre-images of tnple 
intersections lead to secondary tendrils. whose intersections do not fit into the scheme of our 
approximate symbolic dynamics. 

start to create homoclinic intersections along L u , - .  However, at higher levels the number 
of secondary structures increases rapidly and they dominate the behaviour of the system for 
m + 00. The structure of the tendrils must become more complicated for high levels, since 
there are KAM tori in the phase space. For sufficiently high levels the tendrils of Wu and 



Non-hyperbolic scattering map 67 

Figure 7. Schematic plots of small sections of the 
homoclinic tangle. Part (a) shows the smcmre we 
would have in the m e  that our symbolic dynamics 
is exact. Part ( b )  shows the actual structure we 

' /  

. .  
find instead of the one shown in part (a). Part 
(c)  illustrates how images and pre-images of triple 
inlensclions lead to secondary tendrils. The points 
A', B', C', D' and E'. F' in part (c )  are the images 
or pre-images of the points A, B, C. D. E and F in 
part (b). In the transition from part (a )  lo part (b) 
the single intersection point G splits into the three 
inteneetion points A, B and C. The schemic plots 
of parts (6) and (c)  correspond to the essential lines in 
the numerically constructed plots of figures 6(a) and 
6(b). (c l  

W s  come close to the surface of the KAM tori and dive into the fractal jungle of Cantori and 
secondary structures around the KAM tori. Of course, our symbolic dynamics with a finite 
number of rules can never be able to describe complications of this type. It is only able to 
describe the hyperbolic component of the invariant set. 

It is possible to invent a more complicated symbolic dynamics including the secondary 
tendrils for those parameter intervals in which their tips reach into some gap inside primary 
or secondary tendrils. However, this symbolic dynamics would not be exact because on 
higher levels these secondary tendrils also create more complicated intersection patterns 
leading to side tendrils of their own, which would not be included in the improved symbolic 
dynamics. Including them by a still improved symbolic dynamics would not describe the 
still more complicated intersection patterns on still higher levels etc. In the limit of arbitrarily 
high levels the exact symbolic dynamics would have to include an infinite set of levels of 
more complicated intersection patterns and would therefore require an infinite set of rules. 

In this sense we are satisfied that our symbolic dynamics is only valid for low levels 
of the hierarchy and for small values of the delay time in the time delay function. As we 
shall see in the next section, for A = 3.4 our symbolic dynamics remains useful up to level 
30 at least. 
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5. Thermodynamical formalism 

As shown in [8, 11, 121 a very powerful method to extract characteristics of the invariant 
set from data obtained by asymptotic measurements is the so-called thermodynamical 
formalism. The procedure is the following: let $' be the length of the interval JP) 
in the time-delay function as defined in section 3. Form the partition sum 
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where p is a real parameter. The last proportionality becomes valid strictly only in the limit 
m -+ 03. However, as explained above, we are mainly interested in lower levels of the 
hierarchy and so we approximate @ F ( @ )  as 

B F I , ~ ( B )  = [ I n ( z ( B ,  m - 0) - In(Z(B, m ) ) l / l .  (14) 

Next we have to find a clever choice of I and have to see whether ,9&,(B) stabilizes as a 
function of m at least in some intermediate range of m values. 

For complete horseshoes without any pruning (corresponding to a complete n-ary 
branching tree) it is known [8] that the choice I = 1 works well. As the region of large B 
is most sensitive to problems of convergence, let us do the following. Compute ,9fi.m(,9) 
according to (14) for I = 1 and plot the asymptotic slope of this function versus m. The 
result for A = 3.4 can be seen in figure 8. For very small values of m (i.e. m < 11) there is 
no clear tendency visible. For larger values of m we see a periodicity with period 3 because 
of the following reason: for large B the sum is dominated by the interval of greatest length. 
When we climb up the branching tree along the branch containing the longest intervals of 
any level (this is the branch drawn by a thick line in figure 5, it has a periodic symbolic 
code with the basic block +11 repeated indefinitely) then we encounter symbols periodically 
with period 3 and also the ratio of the length of the intervals of consecutive levels changes 
periodically with period 3. This length ratio (i.e. IY"/lj(") along this path) determines the 
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Figure 8. Asymplotic slope for f3 -+ 03 of the free energy function p F ~ ~ ( f 3 )  obtained from 
(14) with I = I venur the level a. The pmmeter A = 3.4 E f t j r .  
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asymptotic slope of pF,.m(p) for p -+ CO. Climbing up the branching tree by three steps 
along this path leads to the same local situation and therefore also to the same length ratio 
regardless of the value of m .  Therefore, 1 = 3 is the appropriate choice for the evaluation 
of (14) for A E I1/2. For very large values of m the periodicity fades out (for A = 3.4 we 
did not reach this region in our numerical computations). Then the non-hyperbolic effects 
not contained in our approximate symbolic description start to dominate the behaviour of 
the system-the branching tree of figure 5 becomes invalid, there are further divisions of 
intervals and the position of the longest interval starts to jump in an unpredictable way 
between various branches from level to level. 

We do not encounter convergence problems for small values of p since this convergence 
behaviour is directed by the shortest intervals. They are always the intervals whose symbolic 
code consists of Os only. This sequence always has a period 1 and therefore always fits 
together with any other period occuring in the range of large j? values. 

The value mnh of m at which non-hyperbolic effects start to dominate depends on the 
exact value of A. As an inspection of figure 1 shows, the value of B increases monotonically 
with increasing A inside the interval I l j2 .  This indicates that mnh is quite small near the 
upper end of I p ,  in fact it is so small that the region of periodic behaviour of the slope of 
pFt.,,,(6) as shown in figure 8 does not exist at all for these values of A .  

Next we choose a value of m well inside the range of periodic behaviour of figure 8, 
namely m = 17, and plot the resulting function, p F 3 , ~ 7 ( j ? )  computed according to (14) with 
I = 3 and m = 17 versus p ,  in figure 9 as a full curve. This plot provides the following 
characteristics of the hyperbolic component of the invariant set [SI: the topological entropy 
is KO = - p F ( @ )  at j? = 0, the fractal dimension Do is the value of j? at which pF(p)  = 0, 
the escape rate K = F(1) and the Lyapunov exponent h is the slope of this function at 

I ,..- , I , 

Figure 9. Plot of ,5’fi,,(,6) versus ,6 computed according [o (14). The full cume is form = 17. 
1 = 3 and A = 3.4 E 1112 a in figure 8. The broken CUNe is for m = 17, I = 5 and 
A = 4.96 E /2,4 and the chain curve is for m = 17, 1 = 4 and A = 2.4 E /1,4. The dotted line 
is the tangent to the solid line Y p = I .  
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p = 1. The tangent to the curve at p = 1 (the dotted line in figure 9) intersects the ,&axis 
at the value of ihe information dimension DI and the vertical axis at minus the value of the 
metric entropy K1, We read off the following ilumerical values: KO = 0.54, Do = 0.57, 
K = 0.26, A = 0.48, D1 = 0.46, Kt = 0.22. Of course, these values only characterize the 
short-time properties of the systems, strictly speaking they apply to the time scale between 
14 and 17. For long times h e  non-hyperbolic effects take over and it is known (22.231 
that in this case A = K = 0, DO =-I expressing the stickiness of the fractal surface of 
KAM tori. These values correspond to the fact that for non-hyperbolic systems the true free 
energy function computed according to (13) in the limit m -+ 00 (expressing the long-time 
behaviour of the system) becomes identically zero for B > 1. For comparison the broken 
curve and the chain curve in figure 9 give B F 5 , ~ 7 ( b )  for A = 4.96 E I,,, and DF.,17(@) for 
A = 2.4 E 1114 respectively. 
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la1 l b t  

Figure 10. Schematic plot of the homoclinic tangle of xo for cz = 4 in pm (a) and a = $ in 
part (6) .  Tendrils up to level 3 are included. 

6. Different intervals I, 

So far we have considered the particillar parameter interval 1112 only. In figure 1 there are 
many more intervals of slow variation of exp(Ko) and next let us explain how we can give 
an approximate symbolic dynamics for these other intervals. Because the homoclinic grid 
for the complete horseshoe as shown in figure 3(d) has a binary organisation, it is useful to 
construct the parameter 01 in an adapted binary way as explained above. 

The next simple cases to be investigated are the c a e s  01 = 4 and 01 = +. The schematic 
plot of the tendrils for 01 = $ is given in figure 10(a). The corresponding branching 
tree is shown in figure 1 I .  The periodicity along the branch of the longest intervals (the 
thick line in the figure corresponding to a periodic symbolic code with basic block 1 1 t t  
repeated indefinitely) is four. Therefore we need I = 4 in this case for the evaluation of 
the thermodynamics according to (14) (see the chain curve in figure 9). Each entry of the 
branching tree is labelled by the last two digits of its symbolic code. The grammatical rules 
for 01 = a are: 1 
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after symbol strings ending on 0 or tl or tt it is allowed to attach 0 or 1 
after symbol strings ending on 01 or 11 or I +  it is only allowed to attach + 
The characteristic polynomial of the corresponding transition matrix is 

P,,&J) = UZ(U4 - Y3 - 2) 

jL++ ++ 

I +  

0 1  
0 0  

'-I 
1 1  
1 0  yr+o + 1  

0 0  + +  
0 0  0 1  

L - q o &  0 0  

Figure 11. Branching tree for a = a. The branch containing the longest interval of each level 
is plotted by a thick line. Each entry is labelled by the last two digits of its symbolic code. 

and the corresponding recurrence relation for the number of intervals on level m is 

z(m. i) = Z(m - 1, $) + 2Z(m - 4, $) . (16) 

The largest root of Ptp is U = 1.54.. . which coincides with the value of B found 
numerically in figure 1 for the corresponding step around A = 2.5. 

More generally, for any 01 = 2-k the symbol t always comes in blocks of length k 
only, such a string begins after 01 and is followed by either 0 or 1. The non-trivial factor 
of the characteristic polynomial is 

&(") = "k+Z - "k+' - 2 (17) 

where the complete polynomial contains an additional factor consisting of a pure power of 
U. The corresponding recurrence relation for the number of intervals on level m is 

Z(m,  2-k)  = Z(m - 1, 2-k)  + 2Z(m - 2 - k, 2 - k ) .  (18) 
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, 0 1  e-= .++11 .+to1 

+ + t o  
Ol+l + t 1 +  

+ l o 1  
A,"n . . " "  71 
O O l t  
0 0 0 1  
0 0 0 0  

0 0 0 1  

Figure 12. Branching tree for U = a .  The brmch containing the longest interval of e3ch level 
is plotted by a thick line. Ezch entry is labelled by the last four digits of its symbolic code. 

These rules are also valid fork = 0 in which case they describe correctly the complete case 

Things become a little more complicated if in CY = r2-' we have r f I .  Then it 
sometimes happens that an interval is cut into three subintervals during the transition from 
one level to the next level. In such a case we append the symbol t to the label of the middle 
subinterval. Let us look closer at the case CY = $: the schematic plot of the homoclinic grid 
is given in figure IO@) and the branching tree obtained from either the time-delay function or 
the homoclinic grid is given in figure 12. Again the branch containing the longest intervals 
of each level is plotted by a thick line, i t  corresponds to a periodic symbolic code with basic 
block IO]++  repeated indefinitely. The period for the convergence of the ~~~~~~~ thermodynamics ~ ~ 

following from it is I = 5 (see the dashed line i n  figure 9). Now the grammatical rules are 
more complicated, we need to know the last four digits of the symbolic code of each entry 
to decide how the tree is continued. For the lowest levels of the tree we can imagine again, 
that each symbolic code is supplemented to the left by a string of 0's of arbitrary length. 
The grammatical rules are: ~ 

after symbol strings ending on 0 or t+ or ++01 or + + I 1  or 111 or 011 or +1 it is 
allowed to attach 0 or I 
after symbol strings ending on I +  it  is allowed to attach 0 or I or t 
after symbol strings ending on 001 or I O 1  or l+Ol  or It1 I i t  is only allowed to attach 

for A > A l .  

t. 
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The corresponding non-trivial factor in the characteristic polynomial of the transition 
matrix is 

P 3 / 4 ( V )  = V 5  - 2v4 + U3 - 2 V Z  + 2v - 2 .  (19) 

Its largest root is close to w = 1.9 coinciding with the numerical value of E extracted from 
figure 1 for A around A = 4.9. 

When we try to treat all values of 01 along similar lines, we must notice two additional 
complications: first, not all values of 01 = r2-' really lead to cases for which the tendrils of 
W" and W s  reach into empty gaps. Let us illustrate this phenomenon for the case 01 = i. 
Starting from the schematic plot of the complete homoclinic tangle shown in figure 3(d) we 
would expect that the case a = 3/8 occurs when the tip of the tendril of level 1 has shrunk 
such that it reaches into the gap created by the tendril of level 3 and the tips of the tendrils 
of level 2 reach into the gaps created by the other tendrils of level 2. In the schematic plot 
in figure 13 we have plotted by broken lines the gaps created by W" up to level 3 in the 
complete case. The label 3 indicates that particular gap of level 3 into which we expect the 
tip of the tendril of level 1 of W s  to reach. Similarly, the label 2 indicates that particular 
gap of level 2 into which we expect the tip of the tendril of level 2 of W s  to reach. The 
actual tendrils of levels 2 and 3 of W s  are also plotted. Now the problem becomes evident: 
for A E I s p  the tendrils of W" have already withdrawn from this part of the phase space so 
that the gaps do no longer exist. Therefore, the interval !3/8 does not exist and in figure 1 
we do not find any nearly horizontal step corresponding to 01 = $. 

Figure 13. The solid line gives a schematic view of the homoclinic tangle in a parameter range 
in which we would expen the intervd l l js  to exist. The broken line shows the gaps created by 
W' 3s they appear in the complete horseshoe shown in figure 3(d ) .  The labels 2 and 3 mark a 
gap of level 2 and a gap of level 3 which have already disappeared for the acrual value of the 
parameter, 

The second difficulty can be explained best for the example of a = $. Let us first, in 
figure 14, give a schematic view of a small section of the homoclinic grid for three different 
values of A. We plot short segments of gaps of levels 2, 4, 5 created by W s  intersecting 
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4 4 

5 5 

2 1 

5 5 

4 4 

Figure 14. Schematic view of a small section of the homoclinic tangle for A Mow. inside and 
above the interval hp in parts (a.6.c) respectively. Some segments of the tendrils of W' are 
shown and iabelled by their level numbers The interior of the tendrils of W' is dotted in that 
part which lies inside of R.  From Wy only the arc Lu,- is shown and labelled by U''. 

the local branch of W". The tendril of W s  of level 3 has already withdrawn so that we 
do not find intersections of it with W" in this region. Now we have to decide which of 
these three situations is the appropriate one for CY = g. We choose the situation shown in 
figure 14(b) for the following reason. In situation (a) the fate of tendrils of Ws of higher 
levels is not yet determined. Tendrils running between the ones of level 4 and 5 shown in 
the figure either intersect W" or can not, depending on the value of A. Similarly, for case 
( c )  the fate of higher level tendrils running between the tendrils of levels 2 and 5 is not yet 
clear and changes under variations of A. On the other hand, we have decided to choose 
the intervals I ,  such that for variations of A within I ,  no homoclinic tangencies of primary 
tendrils are allowed to occur. Therefore only the range of A values for which a situation of 
the qualitative structure of figure 14(b) occurs can belong to I,. In this case all higher level 
tendrils running between those of levels 2 and 5 do not intersect Wu in the region shown 
and all tendrils running between those of levels 4 and 5 intersect W" twice. Only in case 
(b )  is the intersection structure of higher level tendrils clearly determined and independent 
of small changes of A within I,. For 171s chosen this way it is straight foreward to obtain 
the branching tree and to construct from it the following set of grammatical rules for the 
approximate symbolic dynamics: 

after symbol strings ending on 0 or +to01 or 1101 or tt101 or 0101 or ttO1 or 11 or 
+ I  or ttt it is allowed to append 0 or 1 
after symbol strings ending on OOO1 or 1001 or ltOOl or It101 or 1tO1 it is only 
allowed to append t 
after symbol strings ending on 1tt or 1t it is allowed to append 0, 1 or t. 

The interval 17,8 can be seen quite clearly in figure 1 at a height of B = 1.97 around the 
parameter value A = 5.3. So far we do not yet know, in which other intervals difficulties 
occur corresponding to the ones just explained for 17,8. 

To complete all cases of k = 3,  we finally give the grammatical rules for a = 5 / 8  

after symbol strings ending on 0 or tl or ttt it is allowed to append 0 or 1 
after symbol strings ending on 01 or 1 1  or 1tt it is only allowed to append t 
after symbol strings ending on 1+ it is allowed to append 0 or 1 or t. 

The corresponding non-trivial factor in the characteristic polynomial is 

o 

(20) 5 4  2 Ps,s(u) = !J - U - 2 v  - 2 .  
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Its largest root is close to U = 1.8. The interval l s p  is very small and hard to identify in 
figure 1. 

Generally, we noticed that for 01 = r2-k the symbol t can occur in blocks of maximal 
length k .  And the branch in the branching tree which contains the longest intervals is the one 
which contains these blocks of ts in the maximally allowed density. The symbol t always 
corresponds to the largest ratio of the length of the intervals of two consecutive levels. 
There is never a fixed point in the system corresponding to the symbol +. Accordingly, 
an unlimited string of only ts never occurs. An unlimited string of I s  corresponds to the 
fixed point XI and this string is only allowed as long as the fixed point XI is accessible 
to scattering trajectories. The point x1 becomes elliptic for A < 4 only, however, for 
A i 4.7.. . it is already screened behind some KAM lines and scattering trajectories can not 
come into its vicinity. Accordingly unlimited strings of Is do not occur in the symbolic 
dynamics of the branching tree for the time-delay function for A < 4.7. . . and they are not 
allowed in the grammatical rules for CY = $ which belongs to a value of A just below 4.7. 
On the other hand, unlimited strings of Is are allowed by the grammatical rules for 01 values 
corresponding to A z 4.7, .  .. See e.g. the grammatical rules for CY = or 01 = g. After 0 
it is always allowed to attach either 0 or 1 independently of the value of CY. Accordingly 
the unlimited string of only Os is always allowed. This is caused by the accessibility of the 
unstable fixed point xg to scattering trajectories for all values of A .  

For all values of CY there are analogous restrictions for the validity of the approximate 
symbolic dynamics like the ones we have described in section 4 for CY = f. 

7. Discussion 

For a particular model system having a non-hyperbolic invariant set in the form of an 
incomplete horseshoe we have constructed an approximate symbolic dynamics valid in 
some parameter intervals. The essential basic observation, which allowed this construction 
to be done, was that there are parameter intervals in which the tips of the primary tendrils 
of the invariant manifolds do not create homoclinic bifurcations under small changes of the 
parameter. This occurs due to the gaps which are empty of invariant manifolds. It only can 
happen in an open system describing scattering dynamics. In a closed Hamiltonian system 
the invariant manifolds are dense in a connected subset of the phase space not containing 
KAM tori. Therefore our ideas can only be applied to scattering systems or to systems with 
transient chaos. 

The symbolic dynamics constructed is only approximate and describes the hyperbolic 
component of the invariant set. This is quite acceptable for scattering systems which are 
rather open because of the following: a real scattering experiment is done with many 
particles where initial conditions are evenly distributed over a wide range. Most particles 
run on trajectories which stay in the interaction region for a short time only. They come 
in contact with the hyperbolic component of the invariant set only. They do not have 
the necessary time to dive into the non-hyperbolic regions of the phase space sitting on 
the surface of KAM tori. Only very few trajectories (i.e. only a tiny fraction of all initial 
conditions) allow the particles to come sufficiently close to the KAM tori to be influenced 
essentially by non-hyperbolic effects. In this sense a good description of the hyperbolic 
component allows one to understand most properties of the scattering behaviour to a good 
approximation. This argument may fail for systems with tiny leaks only. 

We have one particular symbolic dynamics for each of the parameter intervals I,z-k 
defined in section 6. Of course, for large k these intervals become very short so that i t  will 
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be difficult to identify them. To do this we have to find values of A for which the tips of 
the high level tendrils (they change rapidly under variation of A )  reach into the small gaps 
created by other tendrils of high levels. At the moment we do not know whether these 
intervals are dense on the whole parameter axis or whether there are open intervals on the 
A-axis in which homoclinic tangencies of the primary tendrils are dense under variation 
of A .  

So far our considerations have been presented for an iterated map. How can something 
similar be done for systems with continuous time? For such systems it is difficult to get the 
branching tree from the sole knowledge of the time-delay function. For time continuous 
systems the minimal value of D f  within some interval of continuity is not an integer 
multiple of some basic time unit and therefore it  is not clear how we obtain the hierarchical 
organisation of the intervals without further knowledge. However, we need this organisation 
to select all intervals of a particular level which we need as input for the thermodynamical 
formalism. Here the knowledge of an approximate symbolic dynamics can be of paramount 
importance because it allows the construction of a branching tree which tells us how to 
divide the intervals into the various levels of hierarchy. With the aid of the ideas presented 
in this paper such an approximate symbolic dynamics can be obtained from the homoclinic 
tangle of an appropriate periodic orbit in a Poincar.4 section of the system. The appropriate 
point is usually the fixed point corresponding to the outermost periodic orbit sitting on top 
of the barrier of the potential which divides the position space into the inside and the outside 
region. For these particular periodic orbits considerations are valid which are analogs of 
the statements about the fixed point xigiven at the end of section 3. Instead of a Poincar.4 
return map we can also use a stroboscopic map of a time continuous system as well. This 
possibility may order things differently, but is not any worse in principle. 

As shown in [24] the knowledge of a symbolic dynamics is helpful to organize the 
summation of the semi-classical sum for the quantum scattering amplitude and to check for 
its absolute convergence. Of course, the symbolic dynamics is irrelevant to the questions 
whether the sum converges or not. 

% Rucked and C Jung 
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